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Ten novel microsatellite loci characterized for a
remarkably widespread fish: Galaxias maculatus
(Galaxiidae)
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Abstract

Ten polymorphic microsatellite markers (five tetra-, one compound tetra-, one octa- and three

dinucleotides) were isolated and characterized for Galaxias maculatus, a fish species widely

distributed in the Southern Hemisphere. Markers were tested in 89 individual samples from

a single location and the number of alleles ranged between 2 and 28. Observed and expected

heterozygosities ranged from 0.103 to 0.910 and 0.098 to 0.935 respectively. No evidence was

detected for either linkage disequilibrium (P-values > 0.05 for each locus pair) or deviations

from HWE (P-values > 0.05 for every loci).
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Galaxias maculatus is arguably one of the most widely dis-

tributed freshwater fishes in the world. The species has a

Gondwanan distribution and is found in landlocked and

diadromous populations in Australia, New Zealand and

Patagonian South America (McDowall 1972; Cussac et al.

2004). Waters et al. (2000) examined phylogeographical

patterns throughout the species range using mtDNA con-

trol region sequence divergence and concluded that both

marine dispersal and vicariance may have contributed to

the wide geographical distribution. In South America,

there are few studies examining genetic diversity within

the Galaxiidae family. Zattara & Premoli (2004) com-

pared allozyme diversity among lacustrine (landlocked)

populations of G. maculatus and reported a significant

correlation between gene diversity and lake size. More

recently, Ruzzante et al. (2008) and Zemlak et al. (2008)

examined phylogeographical patterns within Patagonia

for Galaxias platei. Six microsatellite loci were described

for the Galaxias vulgaris complex endemic to New

Zealand, however, amplification in G. maculatus was

reported to yield only ambiguous or faint products

(Waters et al. 1999). In this study, we describe 10 new

microsatellite loci developed specifically for G. maculatus.

To our knowledge, no other microsatellite marker

currently exists for this species.

Genomic DNA was extracted from four individuals

from the lake Gutierrez (Argentina) and one from the

lake Huillinco (Chile) using standard phenol-chloroform-

isoamyl alcohol technique (Sambrook et al. 1989).

Subsequently, these DNAs were used to create micro-

satellite-enriched libraries following the protocol of

Glenn & Schable (2005).

Three DNA samples were digested with RsaI and the

remaining two with HincII restriction enzymes. These

were then ligated to superSNX linkers (Glenn & Schable

2005) and hybridized to four different biotinylated oligo-

nucleotide probe mixtures of the following motifs: 5 lM

each of (GACA)4, (CACG)4 (mixture 1); 5 lM each of

(GACA)4, (CATC)4 (mixture 2); 2 lM each of (AAAC)6,

(ACTG)6, (GACA)6, (GATG) 6, (ACAG)6 (mixture 3); and

2 lM each of (AATC)6, (ACTC)6, (ACCT)6, (GTAT)6,

(AAAG)6, (mixture 4). Enriched fragments were captured

using streptavidin-coated magnetic beads (Dynal, Invi-

trogen), ligated into vectors (Qiagen PCR Cloning Kit),

transformed into New England Biolabs 5-alpha compe-

tent Escherichia coli and plated on Invitrogen imMedia�
Amp Blue media. Two-hundred and eighty-eight
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positive clones were polymerase chain reaction (PCR)

amplified using M13 primers under standard PCR condi-

tions. PCR products were screened in 1% agarose gels

and 150 suitably sized inserts (>500 bp) were sent for

sequencing to Macrogen USA. A total of 138 sequences

were aligned and edited using Sequencher 4.5 and

searched for microsatellite repeats using the open source

Simple Sequence Repeat Identification Tool (http://

www.gramene.org/db/markers/ssrtool). Primer pairs

were designed using Primer 3 software (Rozen & Skalet-

sky 2000) for 46 candidate loci, 10 of which proved useful

when tested with 89 samples from a single location in

Nahuel Huapi Lake, Argentina (Table 1).

DNA was extracted from 89 tissue samples following

Elphinstone et al. (2003). PCR mixture contained 20–

100 ng DNA, 20 mM Tris–HCl, 10 mM (NH4)2SO4,

10 mM KCl, 0.1 % Triton X-100, 2 mM MgCl2, 0.2 mM

dNTPs, 0.5 U Tsg DNA polymerase (BioBasic D0081) and

0.1–0.2 lM of each primer. The cycling conditions used in

Eppendorf thermocyclers were 95 �C for 5 min, followed

by 30 cycles of 95 �C for 45 s, primer-specific annealing

temperature for 60 s, 72 �C for 60 s, and a final extension

at 72 �C for 10 min.

Genotypes were examined with MICRO-CHECKER (van

Oosterhout et al. 2004) and no evidence of null alleles or

large allele drop out was detected. Observed and

expected heterozygosities were calculated using GENEPOP

4.0 (Raymond & Rousset 1995). No evidence of genotypic

linkage disequilibrium between any paired loci (all

P-values > 0.05) or deviations from Hardy–Weinberg

(Table 1) was detected.

The present microsatellite markers are being used to

assess population structure and connectivity among nat-

ural populations in South America.
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