could occur in *C. maculatus* through sexual selection on males ([18, 26–28]). If sexual selection is responsible for the greater strength of the rTD-BV coefficients in males, it raises the possibility of positive feedback, where sexual selection increases the contribution of deleterious mutations to trait expression, in turn increasing both good genes benefits from sexual selection and the benefit of sex itself.

References and Notes
16. Materials and methods are available as supporting material on Science Online.

Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches

Barry Sinervo,1,15† Fausto Méndez-de-la-Cruz,2 Donald B. Miles,3,15 Benoit Heulin,4 Elizabeth Bastiaans,5 Maricela Villagrán-Santa Cruz,5 Rafael Lara-Resendiz,2 Norberto Martínez-Méndez,2 Martha Lucía Calderón-Espinosa,6 Rubi Nelsi Meza-Lázaro,2 Héctor Gadsden,2 Luciano Javier Avila,8 Mariana Morando,12 Ignacio J. De la Riva,12 Pedro Viscionario Sepulveda,19 Carlos Frederico Duarte Rocha,15 Nora Ibariguengoytia,12 César Aguilar Puntriano,13 Manuel Massot,13 Virginie Lepez,13 Tuula A. Oksanen,13 David G. Chapple,17 Aaron M. Bauer,18 William R. Branch,19 Jean Clodebert,15 Jack W. Sites Jr.20

It is predicted that climate change will cause species extinctions and distributional shifts in coming decades, but data to validate these predictions are relatively scarce. Here, we compare recent and historical surveys for 48 Mexican lizard species at 200 sites. Since 1975, 12% of local populations have gone extinct. We verified physiological models of extinction risk with observed local extinctions and extended projections worldwide. Since 1975, we estimate that 4% of local populations have gone extinct worldwide, but by 2080 local extinctions are projected to reach 39% worldwide, and species extinctions may reach 20%. Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change.

Global climate change affects organisms in all biomes and ecosystems. Two natural compensatory responses are possible. Given enough time and dispersal, species may shift to more favorable thermal environments, or they may adjust to new environments by behavioral plasticity, physiological plasticity, or adaptation. Alternatively, failure to adjust or adapt culminates in demographic collapse and extinction. Despite accumulating evidence of contemporary climate change affecting species ranges and phenologies (1–3), evidence of extinctions at either local or global scales is lacking (4–6). Moreover, current forecasting models (7, 8) are not calibrated with actual extinctions, but are premised on hypothesized effects of thermal physiology on demography and extinction. Alternatively, models are based on range shifts or species-area relations in mobile species (1), but not extinctions (9). Hence, there is still much uncertainty regarding the expected magnitude of extinctions resulting from climate change (10).

Empirical validation of global extinction forecasts requires three forms of evidence. First, actual extinctions should be linked to macroclimate and validated to biophysical thermal causes arising from microclimate (11). Second, the pace of climate change should compromise thermal adaptation (10), such that evolutionary rates lag behind global warming owing to constraints on thermal physiology (12, 13). Third, extinctions due to climate should be global in extent.

From 2006 to 2008, we resurveyed 48 *Sceloporus* lizard species at 200 sites in Mexico that were first sampled in 1975 to 1995, and 12% of sites were locally extinct by 2009 (table S1). Although *Sceloporus* lizards are homeotherms that bask and require solar radiation to attain physiologically active body temperatures (*T* _{max}) ([4, 15]), activity in hot weather may result in *T* _{max} exceeding *CT* _{max}, the critical thermal maximum, leading to death. Lizards retreat to cool refuges rather than risk death by overheating. However, hours of restriction (*h*) in thermal refuges limit foraging, constraining costly metabolic functions like growth, maintenance, and reproduction, thereby undermining population growth rates and raising extinction risk. Lizards could evolve higher *T* _{max}, but this brings them closer to *CT* _{max}, which increases risk of overheating. Extinction risk may increase because of other thermal adaptations. For example, viviparity, which is posited to be a thermal adaptation to cold climates (16), may elevate extinction risk because high *T* _{max} can compromise embryonic development in utero (17).

We analyzed rate of change in maximum air temperature *T* _{max} at 99 Mexican weather stations and constructed climate surfaces (tables S2 and S3, 1973 to 2008; fig. S1). Rate of change in *T* _{max} was greatest for winter-spring (January to May; fig. S1 and table S3A) and increased faster in northern and central México and at high elevation, as evidenced by significant coefficients for fitted climate surfaces. We found a correlation between rate of change in *T* _{max} during winter-spring breeding periods and local extinctions of *Sceloporus* species (table S3).

Many viviparous species in México are confined to high-elevation “islands,” where climate change has been most rapid. Logistic regression and multiple regression with phylogenetic independent contrasts ([18, 19]) revealed that extinction risk was significantly related to low latitudinal and altitudinal range limits (Fig. 1, A and B), where thermal physiology and/or ecological interactions limit species ([20, 21]). Phylogenetic correlation analysis ([18]) showed that extinction...
risk of viviparous lizards (18%) was twice that of oviparous lizards (9%, n = 10000 bootstrap replications P < 0.001). Moreover, multiple regression based on phylogenetic independent contrasts (PICs; Fig. 1C and table S4) showed that extinction risk of viviparous taxa was significantly related to low T_b (T_{b,viviparous} = 31.8°C ± 0.31 [SE], T_{b,oviparous} = 34.8°C ± 0.40, t = 5.92, P < 0.0001) and cool montane habitats (T_{air,oviparous} = 22.4°C ± 1.79, T_{air,oviparous} = 28.39°C ± 1.38, t = 2.89, P < 0.006), where climate has changed most rapidly in México.

To validate patterns of extinction risk and T_b, we deployed thermal models (22) that record operative temperatures (T_e) at two extinct and two persistent Yucatán sites of S. serrifer. Hours of restriction in activity (h_r) during reproduction was significantly higher at extinct versus persistent sites (t = 9.26, P < 0.0001). By April 2009, h_r at extinct Yucatán sites had become so severe that if S. serrifer were still present, it would have to retreat shortly after emergence (fig. S4A). Daily T_{max} was positively correlated with h_r assessed by T_e (P < 0.001, fig. S4B). The relation between h_r as a function of T_{max} relative to S. serrifer's T_b (h_r = 6.12 ± 0.74 × (T_{max} − T_b), eq. S2 (23)) is a general formula for predicting extinctions.

We modeled extinct/persistence status based on values for h_r at Sceloporus sites derived from eq. S2 (23). The Yucatán ground truth for S. serrifer suggests that extinction occurs when h_r exceeds 4. We calibrated this value with extinct/persistent Sceloporus sites. Goodness-of-fit tests of the model indicate that the best fit for observed and predicted extinctions at Sceloporus sites is h_r > 3.85. If a species with a given T_b at a given geo-referenced site, subjected to T_{max} experienced h_r > 3.85 during the 2-month reproductive period (March to April), we assumed that it would go extinct by 2009. Association of predicted and observed extinctions from this physiological model was significant for oviparous (χ² = 49.0, P < 0.001) and viviparous taxa (χ² = 4.2, P < 0.04).

As demography of high-elevation taxa becomes compromised due to climate change, species at low elevation that were previously limited by physiology and competition should expand into historically cooler habitats that are now warmer (20, 24), perhaps accelerating extinction of high-elevation forms. For viviparous taxa, six erroneously assigned extinct sites involved six of the eight cases of range expansion by low-elevation taxa, which all invaded from low to high altitudes or latitudes (table S1; significant by sign test, P < 0.001). Adding range shifts of competitors as a factor improved fit significantly between observed and predicted extinctions (Δlog likelihood = 45.37, 1 df, P < 0.0001, logistic regression). Therefore, competitive exclusion by invading low-elevation taxa appears to exacerbate climate-change extinctions of high-elevation taxa.

Lizards cannot evolve rapidly enough to track current climate change because of constraints arising from the genetic architecture of thermal preference (12, 13). A phylogenetic correlation between T_b and CT_{max} constrains adaptation. PIC regression of CT_{max} on T_b among Phrynosomatidae suggests that a shift in T_b by 1°C yields only a 0.5°C correlated response in CT_{max} (table S5 and fig. S7). Thus, CT_{max} may not evolve fast enough to keep up with evolved change in T_b. Furthermore, adaptive increase in T_b due to climate change is constrained by genetic correlations in which high T_b necessarily requires prolonged activity out of retreat sites (25), further increasing risk of overheating. Genetic trade-offs with energetically costly traits such as growth (25) also constrain adaptation.

The evolutionary response (R = h²; s is the selection differential) necessary to keep pace with climate change is further constrained by low heritability for T_b which we previously estimated at R_h = 0.17 for Sceloporus occidentalis in the laboratory (25). We used the physiological model to compute the sustained selection differential at each site j. Such that T_{b,j} + ΔT_{b,j} evolves to match T<sub>max</sub,j + ΔT<sub>max</sub,j} yielding Δh_j = 0 and thereby rescuing population j from extinction (Δ_T computed over 1975 to 2009 (historical), 2009 to 2050, and 2050 to 2080). We assumed s_T = R_T/h² = ΔT<sub>b</sub,j}/h², and generation times of 1 year versus 2 years (i.e., lowland versus montane Sceloporus, table S1). We expressed these critical levels of adaptive response as surfaces for sustained selection differential (Fig. 2B).

We compared the magnitude of selection allowing a species to adapt to climate change with maximum rates sustained under artificial or natural selection (26). Such comparisons are facilitated by dividing each sustained selection differential by the standard deviation (σ_{rb} = 1.23 for T_b of Mexican lizards) to obtain i, the standardized intensity of selection (26). Whereas i > 0.4 can be sustained in laboratory artificial selection for nine generations (27), studies in nature (26) indicate that i > 0.4 computed on an annual basis are rare (<5%). We also referenced i to other anthropogenic causes of selection. Overfishing of Atlantic cod yielded i = 0.55, among the highest measured, but this selection regime caused demographic collapse of the fishery (28). In México, extinct sites sustained significantly higher i than persistent sites (i_{extinct} = 0.34 ± 0.05 versus i_{persistent} = 0.13 ± 0.02, t = 4.17, P < 0.001). The relation between intensity of selection and demographic collapse is simple. If sustained for decades, the mortality fraction necessary for selective shifts to new optima compromises population growth rate precipitating local extinction.

If climate change T_{max} continues unabated in México, 56% of viviparous sites will be extinct by 2050 and 66% by 2080 (Fig. 2B). For oviparous sites, 46% will be extinct by 2050 and 61% by 2080. Based on local extinction of all populations surveyed for species, we project 58% species extinction of Mexican Sceloporus by 2080. Species extinction (58% by 2080) mirrors local population extinction (61 to 66%) because high-elevation endemics will go completely extinct as widespread lowland taxa expand to high elevations.

We used the model to derive global extinction projections (Fig. 3) for 34 lizard families (Table 1) with 1216 geo-referenced T_b records (table S6). Our data include heritabilities that bask and thermoformers that do not bask, but track ambient air and surface temperature. T_{max} was obtained from the WorldClim database (29) at 10-arc min resolution (1975, 2020, 2050, and 2080). We used distributional limits of heritolothers of the world in 1975 to calibrate h_b by family, which if exceeded at a given site would precipitate extinction. The extinction model is easily adapted to thermoformers that maintain T_b close to T_{air} or retreat when T_{max} > T_{preferred}. Assuming a sine wave for T_{air} between T_{min} and T_{max} (24-hour period), if the cumulative hours that T_{max} > T_b for a thermoformer at a given geo-referenced site (table S6) exceeded the h_b of a given lizard family, we assumed it would go extinct. Given T_{max} − T_b at each geo-referenced site, we computed the h_b for each species sustained in 1975, and for each family we used...
the upper 95% confidence level of h_r (Table 1) as the extinction threshold (iteratively estimated, given global climate surfaces). Calibration with these 1975 distributional limits for *Sceloporus* yields $h_r = 3.9$, which was cross-validated by $h_r = 3.85$ computed from observed extinctions in México (1975 to 2009), and $h_r = 4$, which was estimated directly from T_e at persistent *S. serrifer* sites on the verge of extinction.

Fig. 1. (A) Logistic regression of extinction probability ($0 = $extant$, 1 = $extinct$) of *Sceloporus* lizards and reproductive mode: $\chi^2 = 7.41$, $P = 0.025$, Δelevation ($\chi^2 = 8.53$, $P = 0.014$), Δlatitude ($\chi^2 = 7.14, P = 0.004$), and Δlongitude (not significant), where Δ refers to deviations from species range midpoints. (B) Phylogenetic independent contrasts (PICs) of lineage survival (survival probability of local populations) and Δelevation ($t = 2.15, P = 0.03$), Δlatitude ($t = 3.94, P = 0.0001$), and Δlongitude ($t = 2.66, P = 0.009$). (C) PICs of lineage survival, T_b ($t = 2.32, P = 0.02$), T_{air} ($t = 2.31, P = 0.02$), and reproductive mode ($t = -2.92, P = 0.005$).

Fig. 2. (A) Sustained selection differentials per year required for T_b to keep pace with global warming. (B) Extinctions of Mexican *Sceloporus* lizards (1975 to 2009, 2009 to 2050, 2050 to 2080).
As in the validation of Mexican *Sceloporus* extinction, we computed h_r for temperate lizards over 2 critical reproductive months, but were conservative in modeling critical months required for h_r to be exceeded in the equatorial zone (±12° latitude) where lizards potentially breed year-round (h_r exceeded over 12 months), and in the wet-dry tropical zone (±12° to 24° latitude: h_r exceeded for 5 to 6 months).

Geo-referenced T_b samples indicate that current (2009) local extinctions average 4% worldwide (Table 1). Global averages will increase fourfold to 16% by 2050 and nearly eightfold to 30% by 2080, while equatorial extinctions will reach 23% by 2050 and 40% by 2080. Assuming reproduction shifts 1 month earlier in temperate zones [$h^2 = 1.0$ lay date (30)] and proportionately less to the trade zones (i.e., no shift), 2080 global extinctions jump to 38% because spring seasons are warming faster across the globe. Our model is robust to plasticity in T_b (table S7) and initial assump-

![Fig. 3. Contour plots of global levels of local extinction for heliothermic lizards (1975 to 2009, 1975 to 2050, 1975 to 2080), assuming $T_r = 4.55$ (23) and various T_b values.](image-url)
The global generality of our model is verified by concordant distributions of current observed and predicted local extinctions of lizard biotas from four other continents (table S7). Our model pinpoints exact locations of two Liolaemid species going extinct in South America (Liolaemus lutzae, Phymaturus tenebrosus: \(\chi^2 = 32.1, P < 0.0001 \)). In addition, the model predicts recent (2009) extinctions among 24 resurveyed populations of L. lutzae \((\chi^2 = 8.8, P = 0.003) \). In Europe, our
Carbon Dioxide Enrichment Inhibits Nitrile Assimilation in Wheat and Arabidopsis

Arnold J. Bloom,* Martin Burger,† Jose Salvador Rubio Asensio, Asaph B. Cousins‡

The concentration of carbon dioxide in Earth’s atmosphere may double by the end of the 21st century. The response of higher plants to a carbon dioxide doubling often includes a decline in their nitrogen status, but the reasons for this decline have been uncertain. We used five independent methods with wheat and Arabidopsis to show that atmospheric carbon dioxide enrichment inhibited the assimilation of nitrate into organic nitrogen compounds. This inhibition may be largely responsible for carbon dioxide acclimation, the decrease in photosynthesis and growth of plants conducting C3 carbon fixation after long exposures (days to years) to carbon dioxide enrichment. These results suggest that the relative availability of soil ammonium and nitrate to most plants will become increasingly important in determining their productivity as well as their quality as food.

The concentration of CO2 in Earth’s atmosphere has increased from about 280 to 390 ppm since 1800, and predictions are that it will reach between 530 and 970 ppm by the end of the 21st century (1). Plants could mitigate these changes through photosynthetic conversion of atmospheric CO2 into carbohydrates and other organic compounds, yet the potential for this mitigation remains uncertain. Photorespiration is the biochemical pathway in which the chloroplast enzyme Rubisco catalyzes the oxidation of the high-energy substrate RuBP rather than catalyzes the carboxylation of RuBP through the C3 carbon-fixation pathway (2). Elevated CO2 (3).

References and Notes

23. Materials and Methods are available as supporting material on Science Online.
32. Research of B.S. was funded by the National Geographic Society, UC, USGS Committee-on-Research, NSF awards (DEB 0308577, IBN 0221379, ITRE DEB 051597), CNRS fellowships, and visiting professorships (Museum National d’Histoire Naturelle, University Paris 6, Université Paul Sabatier Toulouse III, PAPIIT-UNAM IN213405 to and 224208 to T.M.C., a Université Paul Sabatier Toulouse III Visiting Professorship to D.B.M., CONACYT grants (4171N and 525520) to M.V.-S.C., grant CONACYT-SEP (36242-D) to H.G., a CONACyT fellowship to R.N.M.-L., CNRS funding to B.H., and M.M., Biodiversity: Tenlamas and from ANR Blanche: DIAME to J.C., CONICET grants to J.A.R., M.M., and FONDICYT 1090664 to P.V.S., CGL2005-03156 and CGL2004-04164 grant to S.M.S. to I.J.R., APCT-PIC1086 grant to N.I., scholarships and grants from Universidad Nacional Autónoma de México and American Museum of Natural History to M.V.-S.C., Academy of Finland grant (108955) to T.A.O., Australian Research Council grants to D.G.C., NSF awards DEB 0515909 and 0844523 to A.M.B., NSF award OISE 0530267, PIRE-Patagonia grant to J.W.S., J.I.A., M.M., and P.V.S. and Brigham Young University funding (Biorel Department, Kennedy Center for International Studies, Bean Life Science Museum) to J.W.S.